

Chemical and Environmental Engineering

VIRTUAL OPEN HOUSE

Master's Program Admissions TUESDAY, FEBRUARY 2, 2021

CELEBRATING 30 YEARS Marlan and Rosemary Bourns College of Engineering

Agenda

Welcome: Prof. David Cocker, Chair Graduate Admissions: Prof. Ian Wheeldon Program Overviews

- *Biotechnology*: Prof. Ian Wheeldon
- MSOL Water Quality: Prof. Jinyong Liu
- Air Quality Masters: Prof. Don Collins
 Moderated Q&A: Faculty Panel
 Close

Welcome!

Prof. David Cocker, Chair

UCR and College of Engineering

America's fastest rising university – U.S. News

BEST IN EDUCATION & OPPORTUNITY

.

No. 1

Top performer in **social mobility** in the nation; U.S. News, 2021

 Of universities worldwide;
 Center for World University Rankings, 2019-20

TOP 35

Best value public colleges in America; Money Magazine, 2020

BEST VALUE UNIVERSITY

Public universities in the nation; Forbes, "America's Best Value Colleges"

No. 14 U.S. college that pay off the most in 2020; CNBC Make It, 2020

TOP 20 America's **best value** colleges among public universities; Princeton Review, 2020

HIGHLY RANKED ENGINEERING COLLEGE

TOP 50

Public engineering college in the nation; U.S. News, 2021

No. 20

Best **global university** for engineering; U.S. News, 2021

Best school of engineering majors by **salary potential** in the U.S.; Payscale 2020 College Salary Report

Graduate Admissions

Prof. Ian Wheeldon

CEE By the Numbers

388	84	21	6	
Undergraduate	Graduate Students	Tenured/Tenure Track	Young Investigator	
Students		Faculty	Awards	
\$600K	330%	91%	50%	
Extramural funding	Increase in extramural	Increase in faculty	Increase in graduate students since 2012	
per Pl	funding since 2013	since 2011		

The CEE Difference

Our Department

- Dynamic and highly productive faculty
- Multi-disciplinary research and collaborative projects
- Well-supported infrastructure, laboratory research facilities, and **4** research centers
- Outstanding colloquium series

Our Graduate Program

- Joint Chemical and Environmental Engineering graduate program
- Offering M.S. degrees in Industrial Biotechnology, air quality, and water quality systems engineering
- Five-year B.S. + M.S. accelerated degree offered for UCR undergraduate students

Living in Riverside, California

Small-town charm, BIG on opportunity

Within one hour from:

PLUS: Within driving distance to: San Diego, San Francisco, Joshua Tree National Park, and Las Vegas!

Biotechnology Master's

Prof. Ian Wheeldon

PROFESSIONAL SCIENCE MASTER'S IN INDUSTRIAL BIOTECHNOLOGY NEXT-GEN BIOTECH EDUCATION

- M.S. in as few as 9-12 months
- One of only a few programs training biotech & bio-pharmaceutical skills
- Four focus areas
- Distinguished faculty interaction
- Biotech career prep in research, development, and production

INNOVATIVE DUAL EDUCATIONAL APPROACH

- Class and lab instruction
- Industrial internships
- Undergraduate mentoring
- Built-in CIB research training

INDUSTRIAL BIOTECHNOLOGY

INDUSTRIAL BIOTECHNOLOGY IS A LARGE AND GROWING SECTOR OF THE US ECONOMY

INDUSTRIAL BIOTECHNOLOGY IN CALIFORNIA

The State of California employs **1.4 million**

people in total jobs attributable to the Life Science Industry (direct/ indirect/induced)

\$4.59 billion

in research funding from National Institutes of Health (NIH) for FY2019 15,341 Life Science establishments

https://www.biocom.org/eir/

1 YEAR MS CURRICULUM IN INDUSRIAL BIOTECHNOLOGY

Fall Quarter	Winter Quarter	Spring Quarter	Summer Quarter
CHE 124 Biochemical Engineering Principles	CEE 212 Bioseparations	CEE 210 Cell Engineering	CEE 298i Industrial
CHE 124L Biochemical Engineering Lab	CEE 211 Upstream Processes in Biotechnology	CEE 248 Quantitative Analysis of Upstream	Internship (6-8 weeks)
CEE 236 Energy: Production, Uses, Economics, and Sustainability	CEE 238B Bioprocess Design Laboratory II	CEE 238C Bioprocess Design Laboratory III	
CEE 238A Bioprocess Design Laboratory I	CEE 286 CEE Seminar	CEE 286 CEE Seminar	Legend Process design and analysis
CEE 286 CEE Seminar			Core lecture material Wet lab course

MSOL: Water Quality Systems Engineering

Prof. Jinyong Liu

CELEBRATING 30 YEARS Marlan and Rosemary Bourns College of Engineering

Environmental Engineering Systems (Water)

- Explore the science and engineering principles essential to providing clean water and improving the natural environment
- This specialization incorporates elements of water treatment and chemistry, covering topics such as water systems fundamentals, physical and chemical processes, biological treatment, and advanced technologies

Curriculum

Course Prefix	Course Name	Credit
		Hours
ENGR 200	Engineering in the Global Environment	4
ENGR 201	Technology Innovation and Strategy for Engineers	4
ENGR 202	Introduction to Systems Engineering	4
ENGR 203	Principles of Engineering Management	4

CEE 241	Water Chemistry in Natural and Engineered Systems	4
CEE 225	Physical and Chemical Separation Processes	4
CEE 226	Biological Treatment Processes	4
CEE 243	Advanced Treatment Technologies	4
ENGR 296 A, B, C, D	Project Design Course A, B, C, D	4 – 1 credit courses

UCR CELEBRATING 30 YEARS Marlan and Rosemary Bourns College of Engineering

Curriculum

225

CEE Water Chemistry

241 Chemical principles and advanced calculation for acid-base equilibrium, metalligand coordination, solid precipitationdissolution, redox chemistry, reaction kinetics

CEE Physical and Chemical Processes

Water treatment: coagulation-flocculationsedimentation-filtration; disinfection; water softening; membrane filtration

CEE Biological Processes

226

Wastewater treatment: microbial principles, BOD removal, nutrient removal, sludge treatment, energy and resource recovery

CEE Advanced Water Treatment Technologies

243 Materials and modeling for absorption, ionexchange, and membrane technologies; advanced oxidation and and reduction methods; treatment train systems; case studies and project design on PDFAS treatment, nutrient control, catalyst development, and critical thinking on frontier research and development

Faculty Members

Prof. Haizhou Liu

- Water treatment and reuse
- Advanced oxidation
- Disinfection byproduct control
- Heavy metals in water distribution systems

Prof. Yujie Men

Fate, transport and bioremediation of emerging organic contaminants

Prof. Jinyong Liu

- Groundwater remediation
- Advanced reduction
- PFAS treatment
- Catalytic reduction of perchlorate

Prof. Yun Shen

• Pathogen transmission and control in built environment, water and food

Master's in Air Quality Engineering Prof. Don Collins

UCCRCELEBRATING 30 YEARS
Marlan and Rosemary Bourns
College of Engineering

Department CoursesCEE 136Aerosol TechnologyCEE 207Air Quality ModelingCEE 233Advanced Air Pollution Control and EngineeringCEE 234Vehicle Emissions Control TechnologyENVE 134Technology of Air Pollution ControlENVE 138Combustion Engineering

Courses Outside of the Department			
ENSC 245	Chemistry and Physics of Aerosols		
ME 136	Environmental Impacts of Energy Production and Conversion		
PBPL 233	Environmental Economics and Policy		

California air quality in the news

Los Angeles Times

CALIFORNIA

Los Angeles suffers worst smog in almost 30 years

1/23 Brooks Hubbard with the U.S. Army Corps of Engineers takes photos from the historic North Broadway Bridge over the Los Angeles River Tuesday morning as smoke and ash from the Bobcat fire cloak the area. (Al Seib/Los Angeles Times)

By TONY BARBOZA | STAFF WRITER

SEP. 10, 2020 | 11:45 AM UPDATED 5:09 PM

Air quality research we do in our labs

THE MOBILE ATMOSPHERIC CHAMBER IN USE IN THE VEHICLE EMISSIONS RESEARCH LABORATORY

David Cocker's group:

Uses large Teflon chambers to study pollutant formation from sources like cars and in the complex mixture of species found in the atmosphere.

Air quality research we do in the field

Don Collins' group: Uses drones to measure ozone and other pollutants

Kelley Barsanti's group: Collects wildfire smoke samples from aircraft Sunni Ivey's group: Uses lightweight samplers to study personal exposure

Air quality research we do with our computers

Sunni Ivey's group: Uses regional air quality models to simulate ozone formation and concentrations Kelley Barsanti's group: Uses laboratory data to improve simulation of atmospheric chemistry

Many, many others at UCR doing air quality research

Fundamental Interactions

J. Zhang (Chemistry)

Davies

H. Zhang

Bahreini

(Env. Sci.)

Cocker (Chem. Env.)

Collins

Lin (Env. Sci.)

Barsanti

Hopkins

(Env. Sci.)

Juna

lvey

(Chem. Env.)

Porter

Environmental Interactions

Allen

CARB-UCR MOU	(Chemistry) (Chem.	Env.) (Chem. Env.)	(Mech. Eng.)) (Env. Sci.)	(Earth Sci.)
	Increasir	ng length scale and comple	exit <mark>y</mark>		
Molecular scale Molecular and photon interac <mark>tions</mark> Chemical kinetics Spectroscopy	Nanoscale to microscale Aerosol chemistry and trace gas interactions Particle formation Aerosol composition	<u>Local scale</u> Exposure Health Cloud interactions Solar interaction	Urban scale Emissions Exposure Health	<u>Regional scale</u> Biomass Burning Source Apportionment AQ-Meteorology	<u>Global scale</u> Transport Climate and AQ Remote Sensing

Diagram: J.F. Davies and C. Ivey

An exciting addition to our (almost) campus

ABOUT OUR WORK RESOURCES SERVICES RULEMAKING NEWS EQUITY

Southern California Headquarters

CARB is building a new Southern California Headquarters

Under construction on a 19-acre site near the campus of UC Riverside, the approximately 380,000 square-foot facility will be one of the largest and most advanced vehicle emissions testing and research facilities in the world. It will also be the largest 'net-zero energy' structure (producing as much energy as it uses) of its type in the nation. The facility will also be designed to achieve Leadership in Energy and Environmental Design (LEED) Platinum certification and meet CalGreen Tier 2 standards. The facility is scheduled to be completed in early 2021.

"This striking design will make CARB's new Southern California headquarters an immediately recognizable landmark," said CARB Chair Mary D. Nichols. "It incorporates the highest standards of sustainability in the office and public spaces, and meets the exacting laboratory specifications we need to keep California at the forefront of our world-leading efforts to clean up our air and fight climate change." New ARB Southern CA headquarters

Main campus

An exciting addition to our graduate program for fall 2021*

Master's in Air Quality Engineering

- Non-thesis M.S. that can be **completed in 1 year**
- 16 units of core courses
 - Air Quality Modeling
 - Advanced Air Pollution Control and Engineering
 - Vehicle Emissions Control Technology
 - Energy: Production, Uses, Economics, and Sustainability
- 16 units of electives from list of 18 courses
- 4 units of internship and project
 - ARB, AQMD, EPA, ...

<u>Online</u> Master's in Environmental Engineering Systems (Air)

- Non-thesis M.S. that can be **completed in about 1 year**
- 16 units of core courses
 - Air Quality Modeling
 - Advanced Air Pollution Control and Engineering
 - Vehicle Emissions Control Technology
 - Energy: Production, Uses, Economics, and Sustainability
- 16 units of professional engineering courses
- 4 units of professional project design course

* Pending final approval

Faculty Q&A Panel

Please submit your questions in the chat!

All specific admissions inquiries may be sent to gradcee@engr.ucr.edu.

CONNECT WITH US

Chemical and Environmental Engineering Website: www.cee.ucr.edu Email: gradcee@engr.ucr.edu Twitter: @CEEatUCR

UCR

CELEBRATING 30 YEARS Marlan and Rosemary Bourn College of Engineering