VIRTUAL OPEN HOUSE
Undergraduate Admissions
MONDAY, NOVEMBER 23, 2020

Apply to CEE! Nov. 30th
Tonight’s Agenda

Welcome: Prof. David Cocker, Chair
Undergraduate Admissions: Mr. Desmond Harvey
Research Thrust Overviews
• Materials: Prof. Leslie Abdul-Aziz
• Biotechnology: Prof. Robert Jinkerson
• Water Quality: Prof. Yun Shen
• Air Quality: Prof. Don Collins
Moderated Q&A: Faculty Panel
Close
Welcome!
Prof. David Cocker, Chair
Undergraduate Admissions
Mr. Desmond Harvey
DEGREE PROGRAMS

• Chemical Engineering
 - Chemical Engineering (CHEN)
 - Biochemical Engineering (BCEN)
 - Nanotechnology (NANO)

• Environmental Engineering
 - Air Pollution Control (AIRP)
 - Water Pollution Control (WTRP)
Chemical Engineering
Lower-Division Courses

• Introduction to Chemical & Environmental Engineering

• Calculus

• C++ Programming

• Differential Equations

• General Chemistry

• Multivariable Calculus

• Organic Chemistry

• Physics
Chemical Engineering
Upper-Division Courses

- Applied Fluid Mechanics
- Chemical Process Analysis
- Engineering Modeling & Analysis
- Fluid Mechanics
- Heat Transfer
- Kinetics
- Mass Transfer
- Process Dynamics & Control
- Professional Development
- Separation Processes
- Senior Design
- Thermodynamics
Chemical Engineering
Technical Electives

- Analytical Methods for Chemical & Environmental Engineers
- Catalytic Reaction Engineering
- Chemistry of Materials
- Combustion Engineering
- Electrochemical Engineering
- Fundamentals of Air Pollution Engineering
- Green Engineering
Environmental Engineering
Lower-Division Courses

- Introduction to Chemical & Environmental Engineering
- Multivariable Calculus
- Calculus
- Organic Chemistry
- C++ Programming
- Physics
- Differential Equations
- Statics
- General Chemistry
Environmental Engineering
Upper-Division Courses

- Applied Fluid Mechanics
- Engineering Modeling & Analysis
- Fate & Transport of Environmental Contaminants
- Fluid Mechanics
- Fundamentals of Air Pollution Engineering
- Introduction to Soil Science
- Mass Transfer
- Professional Development
- Senior Design
- Thermodynamics
- Unit Operations & Processes
- Water Quality Engineering
- Water Quality Systems Design
BREADTH REQUIREMENTS

- World History
- Fine Arts, Literature, Philosophy or Religious Studies
- Human Perspectives on Science & Technology
- Economics or Political Science
- Anthropology, Psychology, or Sociology
- Ethnicity
COURSE PLAN – CHEMICAL ENGINEERING

Suggested Course Plan for a UC Riverside Major in CHEMICAL ENGINEERING

Catalog Year: 2020

<table>
<thead>
<tr>
<th>Fall Quarter</th>
<th>Units</th>
<th>Winter Quarter</th>
<th>Units</th>
<th>Spring Quarter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 010</td>
<td>1</td>
<td>CHEM 001B & CHEM 01LB</td>
<td>5</td>
<td>CHEM 001C & CHEM 02LC</td>
<td>5</td>
</tr>
<tr>
<td>Intro to Chem. & Envir. Engineering</td>
<td></td>
<td>General Chemistry & Lab</td>
<td></td>
<td>General Chemistry & Lab</td>
<td></td>
</tr>
<tr>
<td>CHEM 001A & CHEM 00LA</td>
<td>5</td>
<td>ENGL 001B</td>
<td>4</td>
<td>ENGL 001C or Alternate*</td>
<td>4</td>
</tr>
<tr>
<td>General Chemistry & Lab</td>
<td>Intermediate Composition</td>
<td></td>
<td></td>
<td>Applied Intermediate Composition</td>
<td></td>
</tr>
<tr>
<td>ENGL 001A</td>
<td>4</td>
<td>MATH 009B</td>
<td>4</td>
<td>MATH 009C</td>
<td>4</td>
</tr>
<tr>
<td>General Chemistry & Lab</td>
<td></td>
<td>Beginning Computation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 090A</td>
<td>4</td>
<td>PHYS 040A</td>
<td>5</td>
<td>PHYS 040B</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 040C</td>
<td></td>
<td>Physics (Mechanics)</td>
<td>First Year Calculus</td>
<td>First Year Calculus</td>
<td></td>
</tr>
<tr>
<td>SECOND YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 110A</td>
<td>3</td>
<td>CHE 110B</td>
<td>3</td>
<td>MATH 010B</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Process Analysis</td>
<td>Chemical Process Analysis</td>
<td></td>
<td>Multivariable Calculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 008A & CHEM 00LA</td>
<td>4</td>
<td>CHEM 008B & CHEM 00LB</td>
<td>4</td>
<td>CHEM 008C & CHEM 00LC</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry</td>
<td>Organic Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 046</td>
<td>4</td>
<td>MATH 010A</td>
<td>4</td>
<td>CS 010A</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 040C</td>
<td>5</td>
<td>CHE 100</td>
<td>4</td>
<td>Breadth ________</td>
<td>4</td>
</tr>
<tr>
<td>(Physics/Electricity/Magnetism)</td>
<td>Engineering Thermodynamics</td>
<td></td>
<td></td>
<td>Humanities/Social Sciences</td>
<td></td>
</tr>
<tr>
<td>THIRD YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 005A & BIOL 05LA</td>
<td>5</td>
<td>CHE 120</td>
<td>4</td>
<td>CHE 116</td>
<td>4</td>
</tr>
<tr>
<td>Cell & Molecular Biology & Lab</td>
<td></td>
<td>Heat Transfer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 114</td>
<td>4</td>
<td>Technical Elective**</td>
<td>4</td>
<td>CHE/ENVE 130</td>
<td>4</td>
</tr>
<tr>
<td>Applied Fluid Mechanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR 118</td>
<td>5</td>
<td>Breadth ________</td>
<td>4</td>
<td>CHE/ENVE 160A</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Modeling & Analysis</td>
<td>Humanities/Social Sciences</td>
<td></td>
<td>Chem. & Envir. Engineering Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breadth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOURTH YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 117</td>
<td>4</td>
<td>CHE 118</td>
<td>4</td>
<td>CHE 175B</td>
<td>4</td>
</tr>
<tr>
<td>Separation Processes</td>
<td></td>
<td>Process Dynamics and Control</td>
<td></td>
<td>Chemical Process Design</td>
<td></td>
</tr>
<tr>
<td>CHE 160B</td>
<td>3</td>
<td>CHE 160C</td>
<td>3</td>
<td>Technical Elective**</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Engineering Lab</td>
<td>Chemical Engineering Lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Elective**</td>
<td>4</td>
<td>CHE 175A</td>
<td>4</td>
<td>Breadth ________</td>
<td>4</td>
</tr>
<tr>
<td>CHE 159</td>
<td>3</td>
<td>Technical Elective**</td>
<td>4</td>
<td>Humanities/Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Professional Development for Eng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Units: 181</td>
<td>Maximum units: 223</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To earn a B.S., you must complete all College and University requirements. For a full list of requirements, go to catalog.ucr.edu.

ENGLISH COMPOSITION

A C or better is required in all English Composition courses to satisfy the graduation requirement. Please consult with your Academic Advisor for ENGL 1C alternatives.

BREADTH REQUIREMENTS

For an approved list of Breadth courses, go to http://student.engr.ucr.edu/policies/requirements/breadth.html.

- Humanities: (3 courses)
 - A. World History: __________
 - B. Fine Arts/Art/Phil/Rel: __________
 - C. Human Persp. on Sci: __________
- Social Sciences: (3 courses)
 - A. Econ. or Poli.: __________
 - B. Anth, Psy, or Soc.: __________
 - C. General Social Science: __________

ETHNICITY

- 1. __________
- 2. __________

TECHNICAL ELECTIVES

Please note that Technical Electives may be offered throughout the Academic Year. Consult with your Faculty Mentor about potential offerings. See approved technical electives on back.

Course Plan is subject to change.
COURSE PLAN – ENVIRONMENTAL ENGINEERING

ENVIRONMENTAL ENGINEERING

Catalog Year: 2020

To earn a B.S., you must complete all College and University requirements. For a full list of requirements, go to catalog.ucr.edu.

ENGLISH COMPOSITION

A C or better is required in all English Composition courses to satisfy the graduation requirement. Please consult with your Academic Advisor for ENGL 1AC alternatives.

BREADTH REQUIREMENTS

For an approved list of breadth courses, go to http://student.engr.ucr.edu/policies/requirements/breadth.html.

- Humanities: (3 courses)
 - A. World History: ____________
 - B. Fine Arts, Lit., Phil., Rts: ____________
 - C. Human Persp. on Science: ____________
 - Social Sciences: (3 courses)
 - A. Econ. or Pol.: ____________
 - B. Anth., Psych, or Soc.: ____________
 - General Social Science: ____________

- Ethnicity: (1 course)
 - Upper Division: (2 courses)
 - 1. ____________
 - 2. ____________

TECHNICAL ELECTIVES

Please note that Technical Electives may be offered throughout the Academic Year. Consult with your Faculty Mentor about potential offerings. See approved technical electives on back.

Course Plan is subject to change.

<table>
<thead>
<tr>
<th>Fall Quarter</th>
<th>Units</th>
<th>Winter Quarter</th>
<th>Units</th>
<th>Spring Quarter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 020</td>
<td>1</td>
<td>CHEM 001B & CHEM 01LB</td>
<td>5</td>
<td>CHEM 001C & CHEM 01LC</td>
<td>5</td>
</tr>
<tr>
<td>Intro to Chem & Env. Engineering</td>
<td></td>
<td>General Chemistry & Lab</td>
<td></td>
<td>General Chemistry & Lab</td>
<td></td>
</tr>
<tr>
<td>CHEM 001A & CHEM 01LA</td>
<td>5</td>
<td>ENGL 001B</td>
<td>4</td>
<td>ENGL 001C or Alternate*</td>
<td>4</td>
</tr>
<tr>
<td>General Chemistry & Lab</td>
<td></td>
<td>Intermediate Composition</td>
<td></td>
<td>Applied Intermediate Composition</td>
<td></td>
</tr>
<tr>
<td>ENGL 001A</td>
<td>4</td>
<td>MATH 009B</td>
<td>4</td>
<td>MATH 009C</td>
<td>4</td>
</tr>
<tr>
<td>English Composition</td>
<td></td>
<td>First Year Calculus</td>
<td></td>
<td>First Year Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 009A</td>
<td>4</td>
<td>PHYS 040A</td>
<td>5</td>
<td>PHYS 040B</td>
<td>5</td>
</tr>
<tr>
<td>First Year Calculus</td>
<td></td>
<td>Physics (Mechanics)</td>
<td></td>
<td>Physics (Mechanics)</td>
<td></td>
</tr>
</tbody>
</table>

SECOND YEAR					
CHEM 008A & CHEM 08LB	4	CHE 100	4	CHE 100	4
Organic Chemistry		Engineering Thermodynamics		C++ Programming	
ENV 171	4	CHEM 008B & CHEM 08LB	4	ENV 171	4
MATH 040	4	MATH 009A	4	MATH 009B	4
Differential Equations		Multivariable Calculus		Multivariable Calculus	
PHYS 040C	5	Breadth	4	ME 010	4
Physics (Electricity/Magnetism)		Humanities/Social Sciences		Humanities/Social Sciences	

THIRD YEAR					
BIOL 055A & BIOL 055A	5	CHE 120	4	ENV 146	4
Cell & Molecular Biology & Lab		Mass Transfer		Water Quality Systems Design	
CHE 114	4	ENVE 133	4	ENVE/160A	3
Applied Fluid Mechanics		Fund. of Air Pollution Engineering		Chem. & Env. Engineering Lab	
ENGR 118	5	ENVE 142	4	Technical Elective**	4
Engineering Modeling & Analysis		Water Quality Engineering		Breadth	4
Breadth	4	Breadth	4	Breadth	4
Humanities/Social Sciences		Humanities/Social Sciences		Humanities/Social Sciences	

FOURTH YEAR					
EPSC/SWSC 100	4	ENVE 135	4	ENVE 175B	4
Intro to Soil Science		Fate & Trans. of Env. Contaminants		Senior Design Project	
ENVE 120	4	ENVE 160C	3	Technical Elective**	4
Unit Operations and Processes		Environmental Engineering Lab		Technical Elective**	4
ENVE 160B	3	ENVE 175A	4	Technical Elective**	4
Environmental Engineering Lab		Senior Design Project		Breadth	4
CEE 158	3	Breadth	4	Breadth	4
Professional Development for Eng.		Humanities/Social Sciences		Humanities/Social Sciences	

Total Units: 135

Maximum units: 212
ADMISSIONS

- Visit Admissions website for:
 - Financial Aid, Costs, and Fees
 - Important Deadlines
 - Resources & Support
 - UC Application

- November 30th Deadline

https://admissions.ucr.edu/
Chemical Engineers transform raw materials into useful everyday products. Chemical engineers turn the discoveries of chemists and physicists into commercial realities.

Example: Scientists discovered effective COVID vaccine, **Chemical Engineers** will develop the process to mass produce vaccine for the general population

- Our graduates have found jobs in a variety of fields including pharmaceuticals, materials, chemical, fuels, pollution control, medicine, and nuclear and electronic industries

- The unique experience of our department is the synergy between chemical and environmental engineers!
Advanced Materials and Nanotechnology Faculty

- 7 Faculty

Research Areas range from:
- Professor Zachariah: Aerosol, Energetic Materials
- Professor Yan: Photonics
- Professor Wu: Membranes, Soft materials
- Professor Wong: Electron Dynamics in Nanoscale Materials
- Professor Min: Polymers, Bioinspired Materials
- Professor Guo: Batteries and Energy Storage
- Professor Abdul-Aziz: Catalysis, Nanotechnology

Incorporate Knowledge and Research in Courses to Ensure Student’s Receive a Highly-rated World-Class Education with Adequate Preparation for Industry and Academia
Chemical Engineering – Nanomaterials Examples

Electronics
- Materials that modulate electron conductivity, energy storage

Pharmaceuticals
- Nanomedicines for drug delivery and imaging

Cosmetics
- Incorporate Materials improve functionality

Catalysis
- Used in ~90% of Industrial processes to speed up chemical reactions
Chemical Engineering Major – Nanotechnology Option

- Focuses on the use of materials and nanotechnology in industry or nanoscale processes
- Electives include courses that incorporate the faculty’s specialty/research areas
- CHE 105, CHE 161, CEE 135 (Chemistry of Materials)
- 8 Units of the Technical Elective (Select courses)
 - CHE 102 – Catalytic and Reaction Engineering
 - CHE 131 – Electrochemical Engineering
 - ENVE 133 – Fundamentals of Air Pollution Engineering
 - MSE 160 – Nanostructure Characterization Lab
Chemical Engineering Major

Advanced Materials and Nanotechnology Research Opportunities

Gain hands-on experience by performing world-class research on-campus
Biochemical Engineering & Biotechnology
Prof. Robert Jinkerson
Biochemical engineering & Biotechnology faculty @ UCR CEE

HEALTH
- Xin Ge
- Ashok Mulchandani

FOOD & AGRICULTURE
- Robert Jinkerson
- Yanran Li

INDUSTRIAL/ BIOFUELS
- Ian Wheeldon
- Harvey Blanch
- Charles Wyman

ENVIRONMENTAL
- Yujie Men
- Yun Shen
Photosynthetic organisms impact nearly every aspect of our lives.
Engineering algae to make more biofuels

Each dot = 1 mutant

Normalized barcode reads from all cells
Normalized barcode reads from high lipid cells

Wild Type
Mutants
- Protein phosphatase
- E3 ubiquitin ligase
- Transcription regulator

Scale up growth to evaluate
Engineering coral to be resistant to bleaching

coral

lab model sea anemone

mutants

field evaluation

Reef 2 Reef
What will agriculture look like in space or on Mars?
We are developing plants that minimize the inedible portions to be better adapted for new agriculture environments.

Wildtype

in vitro

in soil

mutant

Harvest on the ISS

Collaboration with Martha Orozco-Cárdenas
Water Quality Systems Engineering
Prof. Yun Shen
Water Quality Systems Engineering
Overview

Mission: Promote clean and safe water supply

Faculty members:
- Haizhou Liu
- Jinyong Liu
- Yujie Men
- Yun Shen
Featured course introduction

- ENVE 121 Biological Unit Processes
 - Important biological treatment processes used in water/wastewater treatment.
 - Apply the knowledge to municipal, industrial, and other hazardous waste problems

- ENVE 146 Water Quality Systems Design
 - Application of fluid mechanics to the design of water distribution networks, wastewater and storm water collection systems, and pumps and pump station.

- ENVE 142 Water Quality Engineering
 - Water quality characterization and modeling techniques for natural and engineered systems.
 - Discusses application of chemical equilibrium and kinetic models to water quality.

- ENVE 160C Environmental Engineering Lab
 - Apply principles learned in the classroom to solve practical problems.
 - Design processes, take measurements, analyze the data, and report results from the lab experiments.
Featured course introduction

- ENVE 121 Biological Unit Processes
 - Important biological treatment processes used in water/wastewater treatment.
 - Apply the knowledge to municipal, industrial,

- ENVE 142 Water Quality Engineering
 - Water quality characterization and modeling techniques for natural and engineered systems.

Prepare future leaders in water quality system engineering.

Design
- Application of fluid mechanics to the design of water distribution networks, wastewater and storm water collection systems, and pumps and pump station.

Lab
- Apply principles learned in the classroom to solve practical problems.
- Design processes, take measurements, analyze the data, and report results from the lab experiments.
Research Goals

- Understanding and application of **aquatic chemical processes** to improve water quality, design treatment processes and provide more reliable water supplies.
Research Goals

- Understand and apply reduction reactions and catalysts to treat current and future chemical contaminants with (1) high activity, (2) high robustness, (3) easy preparation, and (4) low cost.
Microbe-Environment Nexus Lab (Dr. Yujie Men)

Minimize the health risks

- Evolution and fate of antibiotic resistant microbes in the environment

Promote application of microbes

- Utilize microbes to treat chemical waste
- Optimize functions of microbes to produce biofuel.

Health

Harmful microbes

Beneficial microbes

Sustainability
Solutions to Health-Environment Nexus Lab (Dr. Yun Shen)

Research Goals

• Elucidate pathogen (including coronavirus) transmission across different media
• Develop engineering solutions to control pathogens and protect public health
Air Quality Systems Engineering
Prof. Don Collins
Some of our undergraduate courses on air quality

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVE 133</td>
<td>Fundamentals of Air Pollution Engineering</td>
</tr>
<tr>
<td>ENVE 134</td>
<td>Technology of Air Pollution Control</td>
</tr>
<tr>
<td>ENVE 138</td>
<td>Combustion Engineering</td>
</tr>
<tr>
<td>ENVE 160B</td>
<td>Environmental Engineering Lab – Air Quality</td>
</tr>
<tr>
<td>ENSC 135</td>
<td>Atmospheric Chemistry</td>
</tr>
<tr>
<td>ME 136</td>
<td>Environmental Impacts of Energy Production and Conversion</td>
</tr>
</tbody>
</table>
Los Angeles suffers worst smog in almost 30 years

By TONY BARBOZA | STAFF WRITER
SEP 10, 2020 | 11:45 AM UPDATE 5:09 PM

Brooks Hubbard with the U.S. Army Corps of Engineers takes photos from the historic North Broadway Bridge over the Los Angeles River Tuesday morning as smoke and ash from the Bobcat fire cloak the area. (Al Seib/Los Angeles Times)
David Cocker’s group uses large Teflon chambers to study pollutant formation from sources like cars and in the complex mixture of species found in the atmosphere.
Air quality research we do in the field

Don Collins’ group uses drones to measure ozone and other pollutants.

Kelley Barsanti’s group collects wildfire smoke samples from aircraft.

Sunni Ivey’s group uses lightweight samplers to study personal exposure.
Air quality research we do with our computers

Sunni Ivey’s group uses regional air quality models to simulate ozone formation and concentrations.

Kelley Barsanti’s group uses laboratory data to improve simulation of atmospheric chemistry.
Many, many others at UCR doing air quality research

Fundamental Interactions
- J. Zhang (Chemistry)
- Davies (Chemistry)
- Bahreini (Env. Sci.)
- Baehrini (Chem. Env.)
- H. Zhang (Chemistry)
- Collins (Chem. Env.)
- Cocker (Chem. Env.)
- Lin (Env. Sci.)

Ensemble Dynamics
- Hopkins (Env. Sci.)
- Ivey (Chem. Env.)
- Li (Env. Sci.)
- Jung (Mech. Eng.)
- Porter (Env. Sci.)
- Allen (Earth Sci.)

Environmental Interactions

Increasing length scale and complexity

Diagram: J.F. Davies and C. Ivey
An exciting addition to our (almost) campus

Southern California Headquarters

CARB is building a new Southern California Headquarters

Under construction on a 19-acre site near the campus of UC Riverside, the approximately 380,000 square-foot facility will be one of the largest and most advanced vehicle emissions testing and research facilities in the world. It will also be the largest ‘net-zero energy’ structure (producing as much energy as it uses) of its type in the nation. The facility will also be designed to achieve Leadership in Energy and Environmental Design (LEED) Platinum certification and meet CalGreen Tier 2 standards. The facility is scheduled to be completed in early 2021.

“This striking design will make CARB’s new Southern California headquarters an immediately recognizable landmark,” said CARB Chair Mary D. Nichols. “It incorporates the highest standards of sustainability in the office and public spaces, and meets the exacting laboratory specifications we need to keep California at the forefront of our world-leading efforts to clean up our air and fight climate change.”
Faculty Q & A Panel

Please submit your questions in the chat!

All specific admissions inquiries may be sent to Mr. Desmond Harvey dharvey@engr.ucr.edu.
Connect With Us!

Chemical and Environmental Engineering

gradcee@engr.ucr.edu
@CEEatUCR
www.cee.ucr.edu

Apply to CEE!
Nov. 30th